A368184 Least k such that there are exactly n ways to choose a set consisting of a different binary index of each binary index of k.
7, 1, 4, 20, 276, 320, 1088, 65856, 66112, 66624, 263232
Offset: 0
Examples
The terms together with the corresponding set-systems begin: 7: {{1},{2},{1,2}} 1: {{1}} 4: {{1,2}} 20: {{1,2},{1,3}} 276: {{1,2},{1,3},{1,4}} 320: {{1,2,3},{1,4}} 1088: {{1,2,3},{1,2,4}} 65856: {{1,2,3},{1,4},{1,5}} 66112: {{1,2,3},{2,4},{1,5}} 66624: {{1,2,3},{1,2,4},{1,5}}
Crossrefs
Programs
-
Mathematica
nn=10000; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; q=Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]],{n,nn}]; k=Max@@Select[Range[Max@@q], SubsetQ[q,Range[#]]&] Table[Position[q,n][[1,1]],{n,0,k}]
Comments