A368186 Number of n-covers of an unlabeled n-set.
1, 1, 2, 9, 87, 1973, 118827, 20576251, 10810818595, 17821875542809, 94589477627232498, 1651805220868992729874, 96651473179540769701281003, 19238331716776641088273777321428, 13192673305726630096303157068241728202, 31503323006770789288222386469635474844616195
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 set-systems: {{1}} {{1},{2}} {{1},{2},{3}} {{1},{1,2}} {{1},{2},{1,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{2},{1,2,3}} {{1},{1,2},{1,2,3}} {{1,2},{1,3},{2,3}} {{1},{2,3},{1,2,3}} {{1,2},{1,3},{1,2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
brute[m_]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]; Table[Length[Union[First[Sort[brute[#]]]& /@ Select[Subsets[Rest[Subsets[Range[n]]],{n}], Union@@#==Range[n]&]]], {n,0,3}]
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t)={2^sum(j=1, #q, gcd(t, q[j])) - 1} G(n,m)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, m, K(q,t)*x^t/t, O(x*x^m))); s+=permcount(q)*exp(g - subst(g,x,x^2))); s/n!)} a(n)=if(n ==0, 1, polcoef(G(n,n) - G(n-1,n), n)) \\ Andrew Howroyd, Jan 03 2024
Formula
a(n) = A055130(n, n) for n > 0. - Andrew Howroyd, Jan 03 2024
Extensions
Terms a(6) and beyond from Andrew Howroyd, Jan 03 2024