A368187 Divisor-minimal numbers whose prime indices of prime indices contradict a strict version of the axiom of choice.
2, 9, 21, 25, 49, 57, 115, 121, 133, 159, 195, 289, 361, 371, 393, 455, 507, 515, 529, 555, 845, 897, 915, 917, 933, 957, 961, 1007, 1067, 1183, 1235, 1295, 1335, 1443, 1681, 2093, 2095, 2135, 2157, 2177, 2193, 2197, 2233, 2265, 2343, 2369, 2379, 2405, 2489
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 9: {2,2} 21: {2,4} 25: {3,3} 49: {4,4} 57: {2,8} 115: {3,9} 121: {5,5} 133: {4,8} 159: {2,16} 195: {2,3,6} 289: {7,7} 361: {8,8} 371: {4,16} 393: {2,32} 455: {3,4,6}
Links
- Wikipedia, Axiom of choice.
Crossrefs
The version for BII-numbers of set-systems is A368532.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; vmin[y_]:=Select[y,Function[s, Select[DeleteCases[y,s], Divisible[s,#]&]=={}]]; Select[Range[100],Select[Tuples[prix /@ prix[#]],UnsameQ@@#&]=={}&]//vmin
Comments