A368197 Triangle read by rows: T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.
1, 4, 4, 18, 0, 9, 32, 8, 0, 24, 100, 0, 0, 0, 25, 72, 72, 36, 0, 0, 36, 294, 0, 0, 0, 0, 0, 49, 256, 64, 0, 96, 0, 0, 0, 96, 486, 0, 144, 0, 0, 0, 0, 0, 99, 400, 400, 0, 0, 100, 0, 0, 0, 0, 100, 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121
Offset: 1
Examples
Triangle begins: 1; 4, 4; 18, 0, 9; 32, 8, 0, 24; 100, 0, 0, 0, 25; 72, 72, 36, 0, 0, 36; 294, 0, 0, 0, 0, 0, 49; 256, 64, 0, 96, 0, 0, 0, 96; 486, 0, 144, 0, 0, 0, 0, 0, 99; 400, 400, 0, 0, 100, 0, 0, 0, 0, 100; 1210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121; ...
Programs
-
Mathematica
nn = 11; p = 2; f = x^p + y^p - z^p; Flatten[Table[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {z, 1, n}], {k, 1, n}], {n, 1, nn}]]
Formula
T(n,k) = Sum_{z=1..n} Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y,z), n) = k], where f(x,y,z) = x^2 + y^2 - z^2.
Comments