cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368216 Number of divisors of n that are antiharmonic numbers (A020487).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Marius A. Burtea, Jan 15 2024

Keywords

Comments

Differs from A046951 for n = 20, 40, 50, 60, 80, ....

Examples

			a(1) = 1 because 1 has only one divisor 1 = A020487(1) antiharmonic number.
a(4) = 2 because 4 has divisors 1 = A020487(1) and 4 = A020487(2), antiharmonic numbers.
		

Crossrefs

Programs

  • Magma
    f:=func; [#[d:d in Divisors(k)|f(d)]:k in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[2, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)

Formula

a(p^k) = floor((k + 2)/2), p prime, k >= 1.
a(p*q) = 1, for p, q prime, p <> q.
a(A005117(k)) = 1, k >= 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A020487(k) = 1.784... . - Amiram Eldar, Jan 26 2024