A368221 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal reflection by two tiles that are each fixed under horizontal reflection.
2, 4, 3, 8, 10, 6, 16, 36, 40, 10, 32, 136, 288, 136, 20, 64, 528, 2176, 2080, 544, 36, 128, 2080, 16896, 32896, 16640, 2080, 72, 256, 8256, 133120, 524800, 526336, 131328, 8320, 136, 512, 32896, 1056768, 8390656, 16793600, 8390656, 1050624, 32896, 272
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+--------------------------------------------- 1 | 2 4 8 16 32 64 2 | 3 10 36 136 528 2080 3 | 6 40 288 2176 16896 133120 4 | 10 136 2080 32896 524800 8390656 5 | 20 544 16640 526336 16793600 537001984 6 | 36 2080 131328 8390656 536887296 34359869440
Links
- Peter Kagey, Illustration of T(3,2)=40
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368221[n_, m_] := 1/2 (2^(n*m) + If[EvenQ[n], 2^(n*m/2), 2^(m (n + 1)/2)])