A368223 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to 180-degree rotation by two tiles that are each fixed under 180-degree rotation.
2, 3, 3, 6, 10, 6, 10, 36, 36, 10, 20, 136, 272, 136, 20, 36, 528, 2080, 2080, 528, 36, 72, 2080, 16512, 32896, 16512, 2080, 72, 136, 8256, 131328, 524800, 524800, 131328, 8256, 136, 272, 32896, 1049600, 8390656, 16781312, 8390656, 1049600, 32896, 272
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+--------------------------------------------- 1 | 2 3 6 10 20 36 2 | 3 10 36 136 528 2080 3 | 6 36 272 2080 16512 131328 4 | 10 136 2080 32896 524800 8390656 5 | 20 528 16512 524800 16781312 536887296 6 | 36 2080 131328 8390656 536887296 34359869440
Links
- Peter Kagey, Illustration of T(3,3)=272
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368223[n_, m_] := 1/2 (2^(n*m) + If[EvenQ[n*m], 2^(n*m/2), 2^((n*m + 1)/2)])