cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368219 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal and vertical reflections by a tile that is fixed under 180-degree rotation but not horizontal or vertical reflection.

Original entry on oeis.org

1, 2, 2, 3, 7, 3, 6, 20, 20, 6, 10, 76, 136, 76, 10, 20, 272, 1056, 1056, 272, 20, 36, 1072, 8256, 16576, 8256, 1072, 36, 72, 4160, 65792, 262656, 262656, 65792, 4160, 72, 136, 16576, 524800, 4197376, 8390656, 4197376, 524800, 16576, 136
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k |  1    2     3       4         5           6
  ----+--------------------------------------------
    1 |  1    2     3       6        10          20
    2 |  2    7    20      76       272        1072
    3 |  3   20   136    1056      8256       65792
    4 |  6   76  1056   16576    262656     4197376
    5 | 10  272  8256  262656   8390656   268451840
    6 | 20 1072 65792 4197376 268451840 17180065792
		

Crossrefs

Programs

  • Mathematica
    A368219[n_, m_] := 2^(n*m/2 - 2)*(2^(n*m/2) + If[EvenQ[n*m], 1, Sqrt[2]] + Boole[EvenQ[n]] + Boole[EvenQ[m]])

A368224 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to 180-degree rotation by an asymmetric tile.

Original entry on oeis.org

1, 3, 3, 4, 10, 4, 10, 36, 36, 10, 16, 136, 256, 136, 16, 36, 528, 2080, 2080, 528, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 136, 8256, 131328, 524800, 524800, 131328, 8256, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k|  1    2      3       4         5           6
  ---+---------------------------------------------
   1 |  1    3      4      10        16          36
   2 |  3   10     36     136       528        2080
   3 |  4   36    256    2080     16384      131328
   4 | 10  136   2080   32896    524800     8390656
   5 | 16  528  16384  524800  16777216   536887296
   6 | 36 2080 131328 8390656 536887296 34359869440
		

Crossrefs

Programs

  • Mathematica
    A368224[n_, m_] := 2^(n*m/2 - 1) (2^(n*m/2) + Boole[EvenQ[n*m]])

A368307 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by two tiles that are both fixed under 180-degree rotation.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 48, 34, 8, 13, 78, 224, 224, 78, 13, 18, 237, 1224, 2302, 1224, 237, 18, 30, 687, 7696, 27012, 27012, 7696, 687, 30, 46, 2299, 50964, 353384, 675200, 353384, 50964, 2299, 46
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2    3      4        5         6
  ---+--------------------------------------
   1 |  2   3    4      6        8        13
   2 |  3   7   13     34       78       237
   3 |  4  13   48    224     1224      7696
   4 |  6  34  224   2302    27012    353384
   5 |  8  78 1224  27012   675200  17920860
   6 | 13 237 7696 353384 17920860 954677952
		

Crossrefs

Programs

  • Mathematica
    A368307[n_, m_] :=  1/(2*n*m) (DivisorSum[n,  Function[d,  DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] +  n*m*2^(n*m/2)* Which[OddQ[n*m], Sqrt[2], OddQ[n + m], 3/2, True, 7/4])
Showing 1-3 of 3 results.