cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A368220 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal and vertical reflections by an asymmetric tile.

Original entry on oeis.org

1, 6, 6, 16, 76, 16, 72, 1056, 1056, 72, 256, 16576, 65536, 16576, 256, 1056, 262656, 4196352, 4196352, 262656, 1056, 4096, 4197376, 268435456, 1073790976, 268435456, 4197376, 4096, 16512, 67117056, 17180000256, 274878431232, 274878431232, 17180000256, 67117056, 16512
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k |    1       2           3              4                  5
  ----+-----------------------------------------------------------
    1 |    1       6          16             72                256
    2 |    6      76        1056          16576             262656
    3 |   16    1056       65536        4196352          268435456
    4 |   72   16576     4196352     1073790976       274878431232
    5 |  256  262656   268435456   274878431232    281474976710656
    6 | 1056 4197376 17180000256 70368756760576 288230376688582656
		

Crossrefs

Programs

  • Mathematica
    A368220[n_, m_] := 2^(n*m - 2)*(2^(n*m) + Boole[EvenQ[n*m]] + Boole[EvenQ[n]] + Boole[EvenQ[m]])

A368222 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal reflection by an asymmetric tile.

Original entry on oeis.org

1, 2, 3, 4, 10, 4, 8, 36, 32, 10, 16, 136, 256, 136, 16, 32, 528, 2048, 2080, 512, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 128, 8256, 131072, 524800, 524288, 131328, 8192, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k|  1    2      3       4         5           6
  ---+---------------------------------------------
   1 |  1    2      4       8        16          32
   2 |  3   10     36     136       528        2080
   3 |  4   32    256    2048     16384      131072
   4 | 10  136   2080   32896    524800     8390656
   5 | 16  512  16384  524288  16777216   536870912
   6 | 36 2080 131328 8390656 536887296 34359869440
		

Crossrefs

Programs

  • Mathematica
    A368222[n_, m_] := 2^(n*m/2 - 1) (2^(n*m/2) + Boole[EvenQ[n]])

A368223 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k grid up to 180-degree rotation by two tiles that are each fixed under 180-degree rotation.

Original entry on oeis.org

2, 3, 3, 6, 10, 6, 10, 36, 36, 10, 20, 136, 272, 136, 20, 36, 528, 2080, 2080, 528, 36, 72, 2080, 16512, 32896, 16512, 2080, 72, 136, 8256, 131328, 524800, 524800, 131328, 8256, 136, 272, 32896, 1049600, 8390656, 16781312, 8390656, 1049600, 32896, 272
Offset: 1

Views

Author

Peter Kagey, Dec 18 2023

Keywords

Examples

			Table begins:
  n\k|  1    2      3       4         5           6
  ---+---------------------------------------------
   1 |  2    3      6      10        20          36
   2 |  3   10     36     136       528        2080
   3 |  6   36    272    2080     16512      131328
   4 | 10  136   2080   32896    524800     8390656
   5 | 20  528  16512  524800  16781312   536887296
   6 | 36 2080 131328 8390656 536887296 34359869440
		

Crossrefs

Programs

  • Mathematica
    A368223[n_, m_] := 1/2 (2^(n*m) + If[EvenQ[n*m], 2^(n*m/2), 2^((n*m + 1)/2)])

A368308 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by a tile that is not fixed under 180-degree rotation.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 4, 9, 9, 4, 4, 26, 32, 26, 4, 9, 62, 192, 192, 62, 9, 10, 205, 1096, 2174, 1096, 205, 10, 22, 623, 7440, 26500, 26500, 7440, 623, 22, 30, 2171, 49940, 351336, 671104, 351336, 49940, 2171, 30
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k| 1   2    3      4        5         6
  ---+-------------------------------------
   1 | 1   2    2      4        4         9
   2 | 2   5    9     26       62       205
   3 | 2   9   32    192     1096      7440
   4 | 4  26  192   2174    26500    351336
   5 | 4  62 1096  26500   671104  17904476
   6 | 9 205 7440 351336 17904476 954546880
		

Crossrefs

Programs

  • Mathematica
    A368308[n_, m_] := 1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*m*2^(n*m/2)*Which[OddQ[n*m], 0, OddQ[n + m], 1/2, True, 3/4])
Showing 1-4 of 4 results.