A368238 Semiprimes whose reversal is a prime, ordered by the prime.
91, 14, 34, 74, 35, 95, 38, 301, 901, 721, 731, 361, 371, 391, 791, 922, 142, 362, 382, 703, 713, 133, 943, 763, 973, 793, 914, 134, 334, 934, 974, 194, 305, 905, 145, 745, 755, 365, 965, 785, 395, 995, 106, 706, 146, 346, 746, 166, 386, 917, 377, 118, 358, 758, 958, 778, 119, 749, 779, 799, 3101
Offset: 1
Examples
a(4) = 74 because A115670(4) = 47 is the 4th prime whose reversal is a semiprime, and 74 is that reversal.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: map(rev, select(p -> isprime(p) and numtheory:-bigomega(rev(p)) = 2, [seq(i,i=3..1000,2)]);
-
Mathematica
s = {}; Do[If[2 == PrimeOmega[sm = FromDigits[Reverse[IntegerDigits[Prime[k]]]]], AppendTo[s, sm]], {k, 200}]; s