A368246 Number of permutations of [n] whose cycle minima sum to n.
1, 1, 0, 2, 3, 8, 90, 384, 2940, 18864, 232848, 1919520, 23364000, 261282240, 3486637440, 48900116160, 746747164800, 11559784320000, 201817271416320, 3580457619916800, 68121866659875840, 1366946563510886400, 28802183294533017600, 627950275273991577600
Offset: 0
Keywords
Examples
a(0) = 1: the empty permutation. a(1) = 1: (1). a(2) = 0. a(3) = 2: (13)(2), (1)(23). a(4) = 3: (124)(3), (142)(3), (12)(34). a(5) = 8: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4), (123)(45), (132)(45).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..451
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, expand(b(n-1)*(x^n+n-1))) end: a:= n-> coeff(b(n), x, n): seq(a(n), n=0..23);
Formula
a(n) = A143946(n,n).
a(n) ~ c * (n-1)!, where c = 0.561459..., conjecture: c = exp(-gamma) = A080130, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 29 2023
Comments