cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368253 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by two tiles that are fixed under these reflections.

Original entry on oeis.org

2, 3, 3, 6, 7, 4, 10, 24, 13, 6, 20, 76, 74, 34, 8, 36, 288, 430, 378, 78, 13, 72, 1072, 3100, 4756, 1884, 237, 18, 136, 4224, 23052, 70536, 53764, 11912, 687, 30, 272, 16576, 179736, 1083664, 1689608, 709316, 77022, 2299, 46
Offset: 1

Views

Author

Peter Kagey, Dec 19 2023

Keywords

Examples

			Table begins:
  n\k |  1   2     3      4        5          6
  ----+----------------------------------------
    1 |  2   3     6     10       20         36
    2 |  3   7    24     76      288       1072
    3 |  4  13    74    430     3100      23052
    4 |  6  34   378   4756    70536    1083664
    5 |  8  78  1884  53764  1689608   53762472
    6 | 13 237 11912 709316 44900448 2865540112
		

Crossrefs

Cf. A005418 (n=1), A225826 (n=2), A000029 (k=1), A222187 (k=2).

Programs

  • Mathematica
    A368253[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*If[EvenQ[n], 1/2 (2^((n*m + 2 m)/2) + 2^(n*m/2)), 2^((n*m + m)/2)] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*Which[EvenQ[m], 2^(n*m/2), OddQ[m] && EvenQ[n], (3/2*2^(n*m/2)), OddQ[m] && OddQ[n], 2^((n*m + 1)/2)])