cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368254 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under horizontal reflections but not vertical reflections.

Original entry on oeis.org

1, 3, 2, 4, 7, 2, 10, 20, 13, 4, 16, 76, 60, 34, 4, 36, 272, 430, 346, 78, 8, 64, 1072, 2992, 4756, 1768, 237, 9, 136, 4160, 23052, 70024, 53764, 11612, 687, 18, 256, 16576, 178880, 1083664, 1685920, 709316, 75924, 2299, 23
Offset: 1

Views

Author

Peter Kagey, Dec 19 2023

Keywords

Examples

			Table begins:
  n\k| 1   2     3      4        5          6
  ---+---------------------------------------
   1 | 1   3     4     10       16         36
   2 | 2   7    20     76      272       1072
   3 | 2  13    60    430     2992      23052
   4 | 4  34   346   4756    70024    1083664
   5 | 4  78  1768  53764  1685920   53762472
   6 | 8 237 11612 709316 44881328 2865540112
		

Crossrefs

Programs

  • Mathematica
    A368254[n_, m_] := 1/(4n)(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*2^(n*m/2)*If[EvenQ[n], 1/2 (2^m + 1), 2^(m/2)] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)], EvenQ]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])

A368255 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under vertical reflections but not horizontal reflections.

Original entry on oeis.org

1, 2, 2, 3, 5, 2, 6, 14, 9, 4, 10, 44, 50, 26, 4, 20, 152, 366, 298, 62, 9, 36, 560, 2780, 4244, 1692, 205, 10, 72, 2144, 22028, 66184, 52740, 11272, 623, 22, 136, 8384, 175128, 1050896, 1679368, 701124, 75486, 2171, 30
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2     3       4          5            6
  ---+---------------------------------------------
   1 |  1   2     3       6         10           20
   2 |  2   5    14      44        152          560
   3 |  2   9    50     366       2780        22028
   4 |  4  26   298    4244      66184      1050896
   5 |  4  62  1692   52740    1679368     53696936
   6 |  9 205 11272  701124   44761184   2863442960
   7 | 10 623 75486 9591666 1227208420 157073688884
		

Crossrefs

Programs

  • Mathematica
    A368255[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*(2^(n*m/2 - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])
Showing 1-2 of 2 results.