A368255 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under vertical reflections but not horizontal reflections.
1, 2, 2, 3, 5, 2, 6, 14, 9, 4, 10, 44, 50, 26, 4, 20, 152, 366, 298, 62, 9, 36, 560, 2780, 4244, 1692, 205, 10, 72, 2144, 22028, 66184, 52740, 11272, 623, 22, 136, 8384, 175128, 1050896, 1679368, 701124, 75486, 2171, 30
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+--------------------------------------------- 1 | 1 2 3 6 10 20 2 | 2 5 14 44 152 560 3 | 2 9 50 366 2780 22028 4 | 4 26 298 4244 66184 1050896 5 | 4 62 1692 52740 1679368 53696936 6 | 9 205 11272 701124 44761184 2863442960 7 | 10 623 75486 9591666 1227208420 157073688884
Links
- Peter Kagey, Illustration of T(2,3)=14
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368255[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*(2^(n*m/2 - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])