A368263 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to 180-degree rotation by an asymmetric tile.
1, 3, 2, 4, 7, 2, 10, 20, 16, 4, 16, 76, 88, 43, 4, 36, 272, 720, 538, 120, 9, 64, 1072, 5472, 8356, 3280, 382, 10, 136, 4160, 43968, 131464, 105376, 22028, 1236, 22, 256, 16576, 349568, 2099728, 3355456, 1400536, 149800, 4243, 30
Offset: 1
Examples
Table begins: n\k| 1 2 3 4 5 6 ---+---------------------------------------- 1 | 1 3 4 10 16 36 2 | 2 7 20 76 272 1072 3 | 2 16 88 720 5472 43968 4 | 4 43 538 8356 131464 2099728 5 | 4 120 3280 105376 3355456 107390592 6 | 9 382 22028 1400536 89489584 5726776672
Links
- Peter Kagey, Illustration of T(2,3)=20
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
Programs
-
Mathematica
A368263[n_, m_] := 1/(2n)*(DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 1/2, True, 0])