cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368308 Table read by antidiagonals: T(n,k) is the number of tilings of the n X k torus up to 180-degree rotation by a tile that is not fixed under 180-degree rotation.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 4, 9, 9, 4, 4, 26, 32, 26, 4, 9, 62, 192, 192, 62, 9, 10, 205, 1096, 2174, 1096, 205, 10, 22, 623, 7440, 26500, 26500, 7440, 623, 22, 30, 2171, 49940, 351336, 671104, 351336, 49940, 2171, 30
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k| 1   2    3      4        5         6
  ---+-------------------------------------
   1 | 1   2    2      4        4         9
   2 | 2   5    9     26       62       205
   3 | 2   9   32    192     1096      7440
   4 | 4  26  192   2174    26500    351336
   5 | 4  62 1096  26500   671104  17904476
   6 | 9 205 7440 351336 17904476 954546880
		

Crossrefs

Programs

  • Mathematica
    A368308[n_, m_] := 1/(2*n*m)*(DivisorSum[n, Function[d, DivisorSum[m, EulerPhi[#] EulerPhi[d] 2^(m*n/LCM[#, d]) &]]] + n*m*2^(n*m/2)*Which[OddQ[n*m], 0, OddQ[n + m], 1/2, True, 3/4])

A368264 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder by two distinct tiles.

Original entry on oeis.org

2, 4, 3, 8, 10, 4, 16, 36, 24, 6, 32, 136, 176, 70, 8, 64, 528, 1376, 1044, 208, 14, 128, 2080, 10944, 16456, 6560, 700, 20, 256, 8256, 87424, 262416, 209728, 43800, 2344, 36, 512, 32896, 699136, 4195360, 6710912, 2796976, 299600, 8230, 60
Offset: 1

Views

Author

Peter Kagey, Dec 21 2023

Keywords

Examples

			Table begins:
  n\k|  1   2     3       4         5           6
  ---+-------------------------------------------
   1 |  2   4     8      16        32          64
   2 |  3  10    36     136       528        2080
   3 |  4  24   176    1376     10944       87424
   4 |  6  70  1044   16456    262416     4195360
   5 |  8 208  6560  209728   6710912   214748416
   6 | 14 700 43800 2796976 178962784 11453291200
		

Crossrefs

Programs

  • Mathematica
    A368264[n_, m_] := 1/n (DivisorSum[n, EulerPhi[#]*2^(n*m/#) &])
Showing 1-2 of 2 results.