cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368320 Expansion of e.g.f. exp(3*x) / (3 - 2*exp(x)).

Original entry on oeis.org

1, 5, 31, 245, 2455, 30365, 449551, 7761605, 153140935, 3399230765, 83835351871, 2274397617365, 67312256650615, 2158161871352765, 74517549339738991, 2756743349166359525, 108783450670915699495, 4560981017661898860365, 202477738962469000202911
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=3, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 3^n + 2 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (27/8)*A004123(n+1) - (1/2)*(2^n + 3/2 + (9/4)*0^n).

A368321 Expansion of e.g.f. exp(4*x) / (3 - 2*exp(x)).

Original entry on oeis.org

1, 6, 42, 354, 3642, 45426, 673962, 11641314, 229708122, 5098836306, 125752998282, 3411596337474, 100968384710202, 3237242806231986, 111776324007217002, 4135115023742364834, 163175176006352025882, 6841471526492783720466, 303716608443703306594122
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=4, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 4^n + 2 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (81/16)*A004123(n+1) - (1/2)*(3^n + (3/2)*2^n + 9/4 + (27/8)*0^n).
Showing 1-2 of 2 results.