A368334 The number of terms of A054744 that are unitary divisors of n.
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[e < p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, 2));}
Formula
Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = 2 if e >= p.
a(n) >= 1, with equality if and only if n is in A048103.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(p*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^p) = 1.29671268566745796443... .
Comments