A368335 The number of divisors of the largest term of A054744 that divides of n.
1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[e < p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i,2]+1));}
Formula
Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = e+1 if e >= p.
a(n) >= 1, with equality if and only if n is in A048103.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(p*s-1) + 1/p^((p+1)*s) - 1/p^((p+1)*s-1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1 + (p-1)*p)/((p-1)*p^p)) = 1.98019019497523582894... .