cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368335 The number of divisors of the largest term of A054744 that divides of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < p, 1, e+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i,2]+1));}

Formula

Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = e+1 if e >= p.
a(n) = A000005(A368333(n)).
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= A000005(n), with equality if and only if n is in A054744.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(p*s-1) + 1/p^((p+1)*s) - 1/p^((p+1)*s-1)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1 + (p-1)*p)/((p-1)*p^p)) = 1.98019019497523582894... .