cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368341 Fixed points of A368207.

Original entry on oeis.org

0, 1, 2, 8, 9, 32, 128, 238, 512, 1012, 2048, 8192, 15070, 21658, 32768, 131072, 383548, 391612, 524288
Offset: 1

Views

Author

Chai Wah Wu, Dec 21 2023

Keywords

Comments

Numbers k such that A368207(k)=k.
Conjecture: 2^(2k+1) for k>=0 (A004171) are terms.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import divisors
    def A368341_gen(startvalue=0): # generator of terms >= startvalue
        for n in count(max(startvalue,0)):
            c = 0
            for d2 in divisors(n):
                if d2**2 > n:
                    break
                c += (d2<<2)-2 if d2**2n:
                    break
            if c<=n:
                for wx in range(1,(n>>1)+1):
                    for d1 in divisors(wx):
                        if d1**2 > wx:
                            break
                        for d2 in divisors(m:=n-wx):
                            if d2**2 > m:
                                break
                            if wx < d1*d2:
                                k = 1
                                if d1**2 != wx:
                                    k <<=1
                                if d2**2 != m:
                                    k <<=1
                                c+=k
                                if c>n:
                                    break
            if c==n:
                yield n
    A368341_list = list(islice(A368341_gen(),10))

Extensions

a(17)-a(19) from Chai Wah Wu, Dec 22 2023