cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368346 a(n) = Sum_{k=0..n} 2^(n-k) * floor(k/4).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 15, 32, 66, 134, 270, 543, 1089, 2181, 4365, 8734, 17472, 34948, 69900, 139805, 279615, 559235, 1118475, 2236956, 4473918, 8947842, 17895690, 35791387, 71582781, 143165569, 286331145, 572662298, 1145324604, 2290649216, 4581298440
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, m=4, k=2) = (k^(n+1)\(k^m-1)-(n+1)\m)/(k-1);
    
  • Python
    def A368346(n): return (1<>2) # Chai Wah Wu, Dec 22 2023

Formula

a(n) = a(n-4) + 2^(n-3) - 1.
a(n) = Sum_{k=0..n} floor(2^k/15).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-4) - 3*a(n-5) + 2*a(n-6).
G.f.: x^4/((1-x) * (1-2*x) * (1-x^4)).
a(n) = floor(2^(n+1)/15) - floor((n+1)/4).