A368366 AGM transform of positive integers (see Comments for definition).
0, 1, 54, 3856, 384375, 52173801, 9342271792, 2144652558336, 616093495529805, 217007162119140625, 92121505246667356416, 46444033776765696086016, 27459259766085858672714571, 18830590227539089561714381425, 14834398958231516437500000000000
Offset: 1
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 1..220
Crossrefs
Programs
-
Maple
AGM := proc(f,M) local b,n,S,P,i,t; b:=[]; for n from 1 to M do S:=add(f(i),i=1..n); P:=mul(f(i),i=1..n); t:=S^n-n^n*P; b:=[op(b),t]; od: b; end; fid:=proc(n) n; end; # the identity map AGM(fid,20);
-
Mathematica
A368366[n_] := n^n (((n + 1)/2)^n - n!); Array[A368366, 10] (* Paolo Xausa, Jan 29 2024 *)
-
PARI
a368366(n) = {my(v=vector(n,i,i)); vecsum(v)^n - n^n*vecprod(v)}; \\ Hugo Pfoertner, Jan 24 2024
-
Python
from itertools import count, islice def AGM(g): # generator of AGM transform of sequence given by generator g S, P = 0, 1 for n, an in enumerate(g, 1): S += an P *= an yield S**n-n**n*P print(list(islice(AGM(count(1)), 15))) # Michael S. Branicky, Jan 24 2024
-
Python
from math import factorial def A368366(n): return ((m:=n**n)*(n+1)**n>>n)-m*factorial(n) # Chai Wah Wu, Jan 25 2024
Comments