cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368366 AGM transform of positive integers (see Comments for definition).

Original entry on oeis.org

0, 1, 54, 3856, 384375, 52173801, 9342271792, 2144652558336, 616093495529805, 217007162119140625, 92121505246667356416, 46444033776765696086016, 27459259766085858672714571, 18830590227539089561714381425, 14834398958231516437500000000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 24 2024

Keywords

Comments

The AGM transform {AGM(n): n >= 1} is a measure of the difference between the arithmetic mean A(n) = S(n)/n and the geometric mean G(n) = P(n)^(1/n) of a sequence {a(n): n >= 1}, where S(n) = a(1)+...+a(n), P(n) = a(1)*...*a(n). It is given by AGM(n) = S(n)^n - n^n*P(n).
For odd n, these terms appear to be divisible by n^n; for even n, by (n/2)^n. Additional reductions may be possible. For example, with n = 7, 11, 15, 19, ..., 59, the terms are also divisible by these powers of two: 4, 8, 11, 16, 19, 23, 26, 32, 35, 39, 42, 47, 50, 54. - Hans Havermann, Jan 24 2024
Since a(n) = n^n*(((n+1)/2)^n-n!) = (n(n+1)/2)^n-n^n*n!, a(n) is divisible by n^n for odd n and divisible by (n/2)^n for even n. - Chai Wah Wu, Jan 25 2024

Crossrefs

See A368367-A368371, A369394 for further examples.
The AGM transform of (n mod 2) is A276978.
A368374 gives another way to look at the problem.

Programs

  • Maple
    AGM := proc(f,M) local b,n,S,P,i,t; b:=[];
    for n from 1 to M do
    S:=add(f(i),i=1..n); P:=mul(f(i),i=1..n); t:=S^n-n^n*P;
    b:=[op(b),t];
    od:
    b;
    end;
    fid:=proc(n) n; end; # the identity map
    AGM(fid,20);
  • Mathematica
    A368366[n_] := n^n (((n + 1)/2)^n - n!);
    Array[A368366, 10] (* Paolo Xausa, Jan 29 2024 *)
  • PARI
    a368366(n) = {my(v=vector(n,i,i)); vecsum(v)^n - n^n*vecprod(v)}; \\ Hugo Pfoertner, Jan 24 2024
    
  • Python
    from itertools import count, islice
    def AGM(g): # generator of AGM transform of sequence given by generator g
        S, P = 0, 1
        for n, an in enumerate(g, 1):
            S += an
            P *= an
            yield S**n-n**n*P
    print(list(islice(AGM(count(1)), 15))) # Michael S. Branicky, Jan 24 2024
    
  • Python
    from math import factorial
    def A368366(n): return ((m:=n**n)*(n+1)**n>>n)-m*factorial(n) # Chai Wah Wu, Jan 25 2024