A368372 a(n) = numerator of AM(n)-HM(n), where AM(n) and HM(n) are the arithmetic and harmonic means of the first n positive integers.
0, 1, 4, 29, 111, 103, 472, 2369, 12965, 30791, 197346, 452993, 3337271, 7485915, 4160656, 18358463, 170991927, 124184839, 1278605110, 110351535, 98802055, 211524139, 2595194516, 16562041459, 219589922071, 464651871609, 2207044831642, 4649180818987, 70862100349605, 148699793966557
Offset: 1
Examples
0, 1/6, 4/11, 29/50, 111/137, 103/98, 472/363, 2369/1522, 12965/7129, 30791/14762, 197346/83711, 452993/172042, 3337271/1145993, 7485915/2343466, 4160656/1195757, 18358463/4873118, ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..2000
Programs
-
Maple
AM:=proc(n) local i; (add(i,i=1..n)/n); end; HM:=proc(n) local i; (add(1/i,i=1..n)/n)^(-1); end; s1:=[seq(AM(n)-HM(n),n=1..50)];
-
Mathematica
A368372[n_] := Numerator[(n+1)/2 - n/HarmonicNumber[n]]; Array[A368372, 35] (* Paolo Xausa, Jan 29 2024 *)
-
PARI
a368372(n) = numerator((n+1)/2 - n/harmonic(n)) \\ Hugo Pfoertner, Jan 25 2024
-
Python
from fractions import Fraction from itertools import count, islice def agen(): # generator of terms A = H = 0 for n in count(1): A += n H += Fraction(1, n) yield ((A*Fraction(1, n) - n/H)).numerator print(list(islice(agen(), 30))) # Michael S. Branicky, Jan 24 2024
-
Python
from fractions import Fraction from sympy import harmonic def A368372(n): return (Fraction(n+1,2)-Fraction(n,harmonic(n))).numerator # Chai Wah Wu, Jan 25 2024