cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368373 a(n) = denominator of AM(n)-HM(n), where AM(n) and HM(n) are the arithmetic and harmonic means of the first n positive integers.

Original entry on oeis.org

1, 6, 11, 50, 137, 98, 363, 1522, 7129, 14762, 83711, 172042, 1145993, 2343466, 1195757, 4873118, 42142223, 28548602, 275295799, 22334054, 18858053, 38186394, 444316699, 2695645910, 34052522467, 68791484534, 312536252003, 630809177806, 9227046511387, 18609365660294, 290774257297357
Offset: 1

Views

Author

N. J. A. Sloane, Jan 24 2024

Keywords

Examples

			0, 1/6, 4/11, 29/50, 111/137, 103/98, 472/363, 2369/1522, 12965/7129, 30791/14762, 197346/83711, 452993/172042, 3337271/1145993, 7485915/2343466, 4160656/1195757, 18358463/4873118, ...
		

Crossrefs

Programs

  • Maple
    AM:=proc(n) local i; (add(i,i=1..n)/n); end;
    HM:=proc(n) local i; (add(1/i,i=1..n)/n)^(-1); end;
    s1:=[seq(AM(n)-HM(n),n=1..50)];
  • Mathematica
    A368373[n_] := Denominator[(n+1)/2 - n/HarmonicNumber[n]];
    Array[A368373, 35] (* Paolo Xausa, Jan 29 2024 *)
  • PARI
    a368373(n) = denominator((n+1)/2 - n/harmonic(n)) \\ Hugo Pfoertner, Jan 25 2024
  • Python
    from fractions import Fraction
    from itertools import count, islice
    def agen(): # generator of terms
        A = H = 0
        for n in count(1):
            A += n
            H += Fraction(1, n)
            yield ((A*Fraction(1, n) - n/H)).denominator
    print(list(islice(agen(), 31))) # Michael S. Branicky, Jan 24 2024
    
  • Python
    from fractions import Fraction
    from sympy import harmonic
    def A368373(n): return (Fraction(n+1,2)-Fraction(n,harmonic(n))).denominator # Chai Wah Wu, Jan 25 2024