A368373 a(n) = denominator of AM(n)-HM(n), where AM(n) and HM(n) are the arithmetic and harmonic means of the first n positive integers.
1, 6, 11, 50, 137, 98, 363, 1522, 7129, 14762, 83711, 172042, 1145993, 2343466, 1195757, 4873118, 42142223, 28548602, 275295799, 22334054, 18858053, 38186394, 444316699, 2695645910, 34052522467, 68791484534, 312536252003, 630809177806, 9227046511387, 18609365660294, 290774257297357
Offset: 1
Examples
0, 1/6, 4/11, 29/50, 111/137, 103/98, 472/363, 2369/1522, 12965/7129, 30791/14762, 197346/83711, 452993/172042, 3337271/1145993, 7485915/2343466, 4160656/1195757, 18358463/4873118, ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..2000
Programs
-
Maple
AM:=proc(n) local i; (add(i,i=1..n)/n); end; HM:=proc(n) local i; (add(1/i,i=1..n)/n)^(-1); end; s1:=[seq(AM(n)-HM(n),n=1..50)];
-
Mathematica
A368373[n_] := Denominator[(n+1)/2 - n/HarmonicNumber[n]]; Array[A368373, 35] (* Paolo Xausa, Jan 29 2024 *)
-
PARI
a368373(n) = denominator((n+1)/2 - n/harmonic(n)) \\ Hugo Pfoertner, Jan 25 2024
-
Python
from fractions import Fraction from itertools import count, islice def agen(): # generator of terms A = H = 0 for n in count(1): A += n H += Fraction(1, n) yield ((A*Fraction(1, n) - n/H)).denominator print(list(islice(agen(), 31))) # Michael S. Branicky, Jan 24 2024
-
Python
from fractions import Fraction from sympy import harmonic def A368373(n): return (Fraction(n+1,2)-Fraction(n,harmonic(n))).denominator # Chai Wah Wu, Jan 25 2024