cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A368386 a(n) is the numerator of the probability that the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 2, 1, 8, 4, 17, 4, 2, 57, 5, 5, 5, 73, 5, 5, 73, 73, 5, 1, 5, 49321, 28165117, 20, 20, 338, 20, 246038, 63425, 28165117, 63425, 123019, 20, 49321, 20, 149998, 63425, 20, 117209258, 74999, 63425, 10, 20, 63425, 20, 74999, 10, 10, 63425, 149998, 63425, 10, 149998, 5000341, 64770, 5
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

In internal diffusion-limited aggregation on the square lattice, there is one initial cell in the origin. In each subsequent step, a new cell is added by starting a random walk at the origin, adding the first new cell visited. a(n)/A368387(n) is the probability that, when the appropriate number of cells have been added, those cells form the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
   1;
   1;
   2, 1;
   8, 4, 17, 4,  2;
  57, 5,  5, 5, 73, 5, 5, 73, 73, 5, 1, 5;
  ...
There are only one monomino and one free domino, so both of these appear with probability 1, and a(1) = a(2) = 1.
For three squares, the probability for an L (or right) tromino (whose binary code is 7 = A246521(4)) is 2/3, so a(3) = 2. The probability for the straight tromino (whose binary code is 11 = A246521(5)) is 1/3, so a(4) = 1.
		

Crossrefs

Cf. A000105, A246521, A335573, A367671, A367760, A367994, A368387 (denominators), A368388, A368390, A368392, A368393, A368660 (external diffusion-limited aggregation).

Formula

a(n)/A368387(n) = (A368392(n)/A368393(n))*A335573(n+1).

A368387 a(n) is the denominator of the probability that the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 3, 3, 35, 35, 35, 35, 35, 154, 462, 462, 231, 462, 231, 462, 924, 462, 462, 7, 924, 1846572, 492573081, 19019, 19019, 5073, 19019, 1804297, 7379372, 492573081, 7379372, 1804297, 19019, 1846572, 19019, 5534529, 7379372, 19019, 492573081, 5534529, 7379372, 19019, 19019, 7379372, 19019, 5534529, 19019, 19019, 14758744, 5534529, 7379372, 19019, 5534529, 44276232, 1844843, 19019
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

In internal diffusion-limited aggregation on the square lattice, there is one initial cell in the origin. In each subsequent step, a new cell is added by starting a random walk at the origin, adding the first new cell visited. A368386(n)/a(n) is the probability that, when the appropriate number of cells have been added, those cells form the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
    1;
    1;
    3,   3;
   35,  35,  35,  35,  35;
  154, 462, 462, 231, 462, 231, 462, 924, 462, 462, 7, 924;
  ...
There are only one monomino and one free domino, so both of these appear with probability 1, and a(1) = a(2) = 1.
For three squares, the probability for an L (or right) tromino (whose binary code is 7 = A246521(4)) is 2/3, so a(3) = 3. The probability for the straight tromino (whose binary code is 11 = A246521(5)) is 1/3, so a(4) = 3.
		

Crossrefs

Cf. A000105, A246521, A335573, A367672, A367761, A367995, A368386 (numerators), A368389, A368391, A368392, A368393, A368660 (external diffusion-limited aggregation).

Formula

A368386(n)/a(n) = (A368392(n)/A368393(n))*A335573(n+1).

A368393 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 2, 6, 6, 35, 35, 140, 35, 35, 1232, 1848, 1848, 1848, 3696, 1848, 1848, 3696, 3696, 1848, 7, 1848, 7386288, 3940584648, 38038, 38038, 5073, 38038, 7217188, 59034976, 3940584648, 59034976, 7217188, 38038, 7386288, 38038, 22138116, 59034976, 38038, 985146162, 22138116, 59034976, 38038, 38038, 59034976, 38038, 22138116, 38038, 38038, 59034976, 22138116, 59034976, 38038, 22138116, 177104928, 3689686, 38038
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

See A368386 for details.
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
     1;
     2;
     6,    6;
    35,   35,  140,   35,   35;
  1232, 1848, 1848, 1848, 3696, 1848, 1848, 3696, 3696, 1848, 7, 1848;
  ...
		

Crossrefs

Cf. A000105, A246521, A335573, A367676, A367765, A368001, A368386, A368387, A368392 (numerators), A368395, A368863 (external diffusion-limited aggregation).

Formula

A368392(n)/a(n) = (A368386(n)/A368387(n))/A335573(n+1).

A368863 Square array read by antidiagonals; the n-th row is the decimal expansion of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 4, 2, 0, 0, 0, 3, 1, 0, 0, 0, 0, 1, 3, 5, 0, 0, 0, 0, 7, 6, 3, 5, 0, 0, 0, 0, 1, 5, 3, 4, 5, 0, 0, 0, 0, 8, 6, 1, 6, 1, 3, 0, 0, 0, 0, 7, 2, 1, 2, 0, 7, 8, 0, 0, 0, 0, 2, 5, 7, 9, 7, 9, 1, 1, 0, 0, 0, 0, 2, 5, 4, 4, 5, 4, 3, 6, 1, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2024

Keywords

Comments

The n-th row is the decimal expansion of the number on the n-th row of A368660 divided by A335573(n+1). See A368660 for details.
Rows A130866(k-1)+1 to A130866(k) correspond to k-celled polyominoes, k >= 2.

Examples

			Array begins:
  1.00000000000000000000... (monomino)
  0.50000000000000000000... (domino)
  0.14317187227209462175... (L tromino)
  0.21365625545581075649... (I tromino)
  0.05331174468766310877... (L tetromino)
  0.05462942885357382723... (square tetromino)
  0.05107523273680265528... (T tetromino)
  0.03794485956843370668... (S tetromino)
  0.08139812221208792734... (I tetromino)
  0.01652391644265825925... (P pentomino)
  0.01709341200261444870... (V pentomino)
  0.00933365290110550590... (W pentomino)
  0.01825698429438352158... (L pentomino)
  0.01973313069852314774... (Y pentomino)
  0.01316184592639931744... (N pentomino)
  0.01069856796007681265... (U pentomino)
  0.02067501830899727807... (T pentomino)
  0.01358243200363682514... (F pentomino)
  0.01232428737930631004... (Z pentomino)
  0.01279646275569121440... (X pentomino)
  0.02831865405554939733... (I pentomino)
  ...
		

Crossrefs

Cf. A000105, A001168, A130866, A246521, A335573, A368660 (free polyominoes), A368864, A368865.
Corresponding sequences for internal diffusion-limited aggregation: A368392, A368393.

A368394 Numerator of the greatest probability that a particular fixed polyomino with n cells appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 1, 17, 1, 58604629, 7301173188011, 115754318583755964857, 42019331987769250981907399, 8401384904285310565650785385525173372621364715976628525884130138767724737789789512541, 37312539934277875075756604487432403113653588096265391102288243043902545095467233603420824779574618387173667051527271
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

a(n) is the numerator of the maximum of A368392/A368393 over the n-th row.
See A368386 for details.

Crossrefs

Cf. A367677, A367766, A368004, A368386, A368390, A368392, A368393, A368395 (denominators), A368865 (external diffusion-limited aggregation).

A368395 Denominator of the greatest probability that a particular fixed polyomino with n cells appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 2, 6, 140, 7, 985146162, 190373377530336, 4103913140371011711744, 1900892466087624965855151720, 615876607410431086757183559738769319966704415344178702618301644074612533917929905792000, 4113793825406037267512938546695751842153799476671563574067367370457531066126881303220587185019966105893663857242112000
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

a(n) is the denominator of the maximum of A368392/A368393 over the n-th row.
See A368386 for details.

Crossrefs

Cf. A367678, A367767, A368005, A368386, A368391, A368392, A368393, A368394 (numerators), A368865 (external diffusion-limited aggregation).
Showing 1-6 of 6 results.