cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368393 a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 2, 6, 6, 35, 35, 140, 35, 35, 1232, 1848, 1848, 1848, 3696, 1848, 1848, 3696, 3696, 1848, 7, 1848, 7386288, 3940584648, 38038, 38038, 5073, 38038, 7217188, 59034976, 3940584648, 59034976, 7217188, 38038, 7386288, 38038, 22138116, 59034976, 38038, 985146162, 22138116, 59034976, 38038, 38038, 59034976, 38038, 22138116, 38038, 38038, 59034976, 22138116, 59034976, 38038, 22138116, 177104928, 3689686, 38038
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

See A368386 for details.
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
     1;
     2;
     6,    6;
    35,   35,  140,   35,   35;
  1232, 1848, 1848, 1848, 3696, 1848, 1848, 3696, 3696, 1848, 7, 1848;
  ...
		

Crossrefs

Cf. A000105, A246521, A335573, A367676, A367765, A368001, A368386, A368387, A368392 (numerators), A368395, A368863 (external diffusion-limited aggregation).

Formula

A368392(n)/a(n) = (A368386(n)/A368387(n))/A335573(n+1).