A368401 Number T(n,k) of permutations of [n] whose sum of cycle maxima minus cycle minima gives k, triangle T(n,k), n>=0, 0<=k<=A002620(n), read by rows.
1, 1, 1, 1, 1, 2, 3, 1, 3, 7, 11, 2, 1, 4, 12, 28, 53, 12, 10, 1, 5, 18, 52, 135, 289, 84, 72, 58, 6, 1, 6, 25, 84, 257, 734, 1825, 524, 564, 496, 422, 60, 42, 1, 7, 33, 125, 429, 1407, 4545, 12983, 3520, 3976, 4292, 3950, 3422, 790, 486, 330, 24
Offset: 0
Examples
T(3,0) = 1: (1)(2)(3). T(3,1) = 2: (12)(3), (1)(23). T(3,2) = 3: (123), (132), (13)(2). Triangle T(n,k) begins: 1; 1; 1, 1; 1, 2, 3; 1, 3, 7, 11, 2; 1, 4, 12, 28, 53, 12, 10; 1, 5, 18, 52, 135, 289, 84, 72, 58, 6; 1, 6, 25, 84, 257, 734, 1825, 524, 564, 496, 422, 60, 42; ...
Links
- Alois P. Heinz, Rows n = 0..21, flattened
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=0, 1, (k-> `if`(n>k, b(n-1, s)+add(b(n-1, subs(h=h+[0, 1], s)), h=s), 0)+ `if`(n>k+1, b(n-1, {s[], [n,1]}), 0)+add(h[2]!*expand( x^(h[1]-n)*b(n-1, s minus {h})), h=s))(nops(s))) end: T:= (n, k)-> coeff(b(n, {}), x, k): seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..10);