A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.
0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0
Examples
Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions: {{1},{1}} {{1},{1},{1}} {{1},{1},{2,3}} {{1},{1},{2,3,4}} {{1},{2},{2}} {{1},{2},{1,2}} {{2},{1,2},{1,2}} {{2},{2},{1,2}} {{3},{3},{1,2,3}} {{1},{1},{1},{1}} {{1},{1},{1},{2,3}} {{1},{1},{2},{2}} {{1},{1},{3},{2,3}} {{1},{2},{2},{2}} {{1},{2},{2},{1,2}} {{1},{2},{3},{3}} {{1},{2},{2},{3,4}} {{1},{2},{3},{2,3}} {{1},{3},{3},{2,3}} {{2},{2},{2},{1,2}} {{1},{1},{1},{1},{1}} {{1},{1},{2},{2},{2}} {{1},{2},{2},{2},{2}} {{1},{2},{2},{3},{3}} {{1},{2},{3},{3},{3}} {{1},{2},{3},{4},{4}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
The complement is counted by A368422.
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]
Comments