cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368421 Number of non-isomorphic set multipartitions of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 2, 7, 16, 47, 116, 325, 861
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets Y, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 16 set multipartitions:
  {{1},{1}}  {{1},{1},{1}}  {{1},{1},{2,3}}    {{1},{1},{2,3,4}}
             {{1},{2},{2}}  {{1},{2},{1,2}}    {{2},{1,2},{1,2}}
                            {{2},{2},{1,2}}    {{3},{3},{1,2,3}}
                            {{1},{1},{1},{1}}  {{1},{1},{1},{2,3}}
                            {{1},{1},{2},{2}}  {{1},{1},{3},{2,3}}
                            {{1},{2},{2},{2}}  {{1},{2},{2},{1,2}}
                            {{1},{2},{3},{3}}  {{1},{2},{2},{3,4}}
                                               {{1},{2},{3},{2,3}}
                                               {{1},{3},{3},{2,3}}
                                               {{2},{2},{2},{1,2}}
                                               {{1},{1},{1},{1},{1}}
                                               {{1},{1},{2},{2},{2}}
                                               {{1},{2},{2},{2},{2}}
                                               {{1},{2},{2},{3},{3}}
                                               {{1},{2},{3},{3},{3}}
                                               {{1},{2},{3},{4},{4}}
		

Crossrefs

The case of unlabeled graphs is A140637, complement A134964.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A367867, complement A133686.
With distinct edges we have A368094 connected A368409.
The complement with distinct edges is A368095, connected A368410.
Allowing repeated elements gives A368097, ranks A355529.
The complement allowing repeats is A368098, ranks A368100.
Factorizations of this type are counted by A368413, complement A368414.
The complement is counted by A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]