cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368442 Expansion of e.g.f. exp(-x) / (3 - 2*exp(2*x)).

Original entry on oeis.org

1, 3, 33, 483, 9537, 235203, 6960993, 240350883, 9484451457, 421047638403, 20768624968353, 1126878096701283, 66701360437693377, 4277150701010241603, 295365044324205535713, 21853794944452689691683, 1724738884402183269207297, 144626802398076537956524803
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+2*sum(j=1, i, 2^j*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = (-1)^n + 2 * Sum_{k=1..n} 2^k * binomial(n,k) * a(n-k).

A368454 Expansion of e.g.f. 2*exp(-x) / (3 - exp(2*x)).

Original entry on oeis.org

1, 0, 3, 12, 93, 840, 9183, 117012, 1704153, 27921360, 508302363, 10178888412, 222365364213, 5262547606680, 134124963385143, 3662574088282212, 106682195378484273, 3301614846549616800, 108189336403552025523, 3742170760095124874412
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+sum(j=1, i, 2^(j-1)*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = (-1)^n + Sum_{k=1..n} 2^(k-1) * binomial(n,k) * a(n-k).
Showing 1-2 of 2 results.