cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368453 Expansion of e.g.f. 3*exp(x) / (4 - exp(3*x)).

Original entry on oeis.org

1, 2, 8, 52, 452, 4892, 63508, 962012, 16654772, 324375292, 7019618708, 167098274972, 4339293330292, 122075401356092, 3698469101172308, 120054668185331932, 4156854586083305012, 152925374174876071292, 5956866331612558316308, 244927333201908131524892
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 3^(j-1)*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = 1 + Sum_{k=1..n} 3^(k-1) * binomial(n,k) * a(n-k).

A368449 Expansion of e.g.f. exp(x) / (1 + log(1 - 2*x)/2).

Original entry on oeis.org

1, 2, 7, 42, 365, 4090, 55699, 890722, 16341849, 338128594, 7786397471, 197460558394, 5467207989957, 164085022299146, 5305738076252587, 183876885720455218, 6798985094507177137, 267160159254659407650, 11116956337133269707319, 488348854052875260086474
Offset: 0

Views

Author

Seiichi Manyama, Dec 24 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=1, i, 2^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = 1 + Sum_{k=1..n} 2^(k-1) * (k-1)! * binomial(n,k) * a(n-k).
Showing 1-2 of 2 results.