cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368514 Irregular triangle T(n,k) read by rows: similar to A009766 but length of rows grows like log(3)/log(2).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 0, 1, 3, 3, 1, 4, 7, 0, 1, 5, 12, 12, 0, 1, 6, 18, 30, 30, 1, 7, 25, 55, 85, 0, 1, 8, 33, 88, 173, 173, 1, 9, 42, 130, 303, 476, 0, 1, 10, 52, 182, 485, 961, 961, 0, 1, 11, 63, 245, 730, 1691, 2652, 2652, 1, 12, 75, 320, 1050, 2741, 5393, 8045, 0
Offset: 1

Views

Author

Ruud H.G. van Tol, Dec 28 2023

Keywords

Examples

			Triangle T(n,k) begins:
 n|k:1|  2|  3|  4|  5|  6|  7|  8|...
--+---+---+---+---+---+---+---+---+---
 1|  1
 2|  1   0
 3|  1   1
 4|  1   2   0
 5|  1   3   3
 6|  1   4   7   0
 7|  1   5  12  12   0
 8|  1   6  18  30  30
 9|  1   7  25  55  85   0
10|  1   8  33  88 173 173
11|  1   9  42 130 303 476   0
12|  1  10  52 182 485 961 961   0
...
		

Crossrefs

Cf. A009766 (Catalan's triangle), A098294 (row lengths), A100982 (row sums).

Programs

  • PARI
    row(n) = my(v=Vec([1], logint(3^n, 2)+1-n), c=1); for(i=2, n, for(j=2, c, v[j]+=v[j-1]); c=logint(3^i,2)+1-i); v
    
  • PARI
    rows(n) = my(v=vector(n, i, Vec([1], logint(3^i,2)+1-i))); for(i=3, n, for(j=2, #v[i-1], v[i][j]=v[i][j-1]+v[i-1][j])); v

Formula

Row length L(n) = A098294(n) = floor(n*log(3)/log(2)) + 1 - n.
T(n,1) = 1.
T(n+1,k) = T(n+1,k-1) + T(n,k) for 1 < k <= L(n).
T(n+1,L(n+1)) = 0 if L(n+1) > L(n).
T(n+1,2) = n-1.
T(n+3,3) = A055998(n-1) = (n-1)*(n+4)/2.
T(n+5,4) = A111396(n-1) = (n-1)*(n+6)*(n+7)/6.
T(n+1,k) = Sum_{j=1..k} T(n,j) for 1 <= k <= L(n).

Extensions

Corrected by Ruud H.G. van Tol, Nov 29 2024