A368560 a(1) = 78557 (the first Sierpinski number); thereafter a(n+1) = Od(3*5*7*13*19*37*73 - a(n)), where Od(m) is the odd part of m.
78557, 34985939, 2191531, 8482363, 7696009, 31177213, 19436611, 790841, 34629797, 17710319, 13085029, 28482703, 10391933, 29829251, 78557, 34985939, 2191531, 8482363, 7696009, 31177213, 19436611, 790841, 34629797, 17710319, 13085029, 28482703, 10391933, 29829251
Offset: 1
Examples
a(1) = 78557 is a Sierpinski number and a(2) = (3*5*7*13*19*37*73 - 78557)/2 = 34985939 is a Riesel number with the same covering set {3, 5, 7, 13, 19, 37, 73}.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
od[n_] := n/2^IntegerExponent[n, 2]; a[1] = 78557; a[n_] := a[n] = od[70050435 - a[n-1]]; Array[a, 42] (* Amiram Eldar, Dec 30 2023 *)
Formula
a(n + 14) = a(n).
Comments