A368566 a(n) = number of pairs (p,q) of partitions of n such that d(p,q) > o(p,q), where d and o are distance functions; see Comments.
0, 2, 6, 18, 34, 48, 62, 108, 166, 242, 334, 512, 706, 984, 1368, 1876, 2492, 3360, 4422, 5848, 7574, 9792, 12596, 16130, 20412, 25850
Offset: 1
Examples
The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)): | 4 31 22 211 1111 ------------------------------------------------ 4 d | 0 2 4 4 6 o | 0 1 2 3 4 31 d | 2 0 2 2 4 o | 1 0 1 2 3 22 d | 4 2 0 2 4 o | 2 1 0 1 2 211 d | 4 2 2 0 2 o | 3 2 1 0 1 1111 d | 6 4 4 2 0 o | 4 3 2 1 0 The table shows 18 pairs (p,q) for which d(p,q) > o(p,q), so a(4) = 18.
Programs
-
Mathematica
c[n_] := PartitionsP[n]; q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]]; r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; d[u_, v_] := Total[Abs[u - v]]; p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]]; Table[Count[p[n], 0], {n, 1, 16}] (* A368565 *) Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}] (* A368566 *) Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}] (* A368567 *)
Comments