cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368593 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^2 - A(-x)^2)/2 + x*sqrt( (A(x)^4 + A(-x)^4)/2 ).

Original entry on oeis.org

1, 1, 2, 7, 18, 78, 220, 1043, 3090, 15402, 47044, 242126, 755076, 3973820, 12580344, 67303139, 215511330, 1167556434, 3772175860, 20640707866, 67167649868, 370510806212, 1212836703304, 6735128062542, 22156120392276, 123731147310820, 408741630687656, 2293595176625340
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2024

Keywords

Comments

Conjecture: a(n) is odd when n = 2^k - 1 for k >= 0, and even elsewhere.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 18*x^4 + 78*x^5 + 220*x^6 + 1043*x^7 + 3090*x^8 + 15402*x^9 + 47044*x^10 + 242126*x^11 + 755076*x^12 + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 54*x^4 + 220*x^5 + 717*x^6 + 3090*x^7 + 10562*x^8 + 47044*x^9 + 165858*x^10 + 755076*x^11 + ...
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 205*x^4 + 836*x^5 + 3178*x^6 + 13192*x^7 + 51490*x^8 + 216808*x^9 + 862588*x^10 + ...
The even bisection of A(x) may be formed from the odd bisection of A(x)^2:
(A(x) + A(-x))/2 = 1 + 2*x^2 + 18*x^4 + 220*x^6 + 3090*x^8 + 47044*x^10 + ...
(A(x)^2 - A(-x)^2)/2 = 2*x + 18*x^3 + 220*x^5 + 3090*x^7 + 47044*x^9 + ...
The odd bisection of A(x) may be formed from the even bisection of A(x)^4:
(A(x) - A(-x))/2 = x + 7*x^3 + 78*x^5 + 1043*x^7 + 15402*x^9 + ...
(A(x)^4 + A(-x)^4)/2 = 1 + 14*x^2 + 205*x^4 + 3178*x^6 + 51490*x^8 + ...
sqrt( (A(x)^4 + A(-x)^4)/2 ) = 1 + 7*x^2 + 78*x^4 + 1043*x^6 + 15402*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n,
    A = Vec(1 + x*(Ser(A)^2 - subst(Ser(A)^2,x,-x))/2 + x*sqrt( (Ser(A)^4 + subst(Ser(A)^4,x,-x))/2 ) +x*O(x^#A) ) );A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*(A(x)^2 - A(-x)^2)/2 + x*sqrt( (A(x)^4 + A(-x)^4)/2 ).
(2) A(x) = 2 - A(-x) + x*A(x)^2 - x*A(-x)^2.
(3) A(x) = A(-x) + x*sqrt( (A(x)^4 + x*A(-x)^4)/2 ).
(4.a) A(x) = (1 - sqrt(1-8*x + 4*x*A(-x) + 4*x^2*A(-x)^2)) / (2*x).
(4.b) A(-x) = (sqrt(1+8*x - 4*x*A(x) + 4*x^2*A(x)^2) - 1) / (2*x).
(5) (A(x) + A(-x))/2 = 1/(1 - x*(A(x) - A(-x))).