A368597 Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges.
1, 1, 3, 17, 150, 1803, 27364, 501015, 10736010, 263461265, 7283725704, 223967628066, 7581128184175, 280103206674480, 11216492736563655, 483875783716549277, 22371631078155742764, 1103548801569848115255, 57849356643299101021960, 3211439288584038922502820
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 17 set-systems: {} {{1}} {{1},{2}} {{1},{2},{3}} {{1},{1,2}} {{1},{2},{1,3}} {{2},{1,2}} {{1},{2},{2,3}} {{1},{3},{1,2}} {{1},{3},{2,3}} {{2},{3},{1,2}} {{2},{3},{1,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{1,3},{2,3}} {{2},{1,2},{1,3}} {{2},{1,2},{2,3}} {{2},{1,3},{2,3}} {{3},{1,2},{1,3}} {{3},{1,2},{2,3}} {{3},{1,3},{2,3}} {{1,2},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Graph Loop.
Crossrefs
This is the covering case of A014068.
The unlabeled version is A368599.
The version contradicting strict AOC is A368730.
The connected case is A368951.
A000085 counts set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n]&]],{n,0,5}]
-
PARI
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k+1,2), n)) \\ Andrew Howroyd, Jan 06 2024
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k+1,2), n). - Andrew Howroyd, Jan 06 2024
Extensions
Terms a(7) and beyond from Andrew Howroyd, Jan 06 2024
Comments