A368599 Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n} with union {1..n}, or unlabeled loop-graphs with n edges covering n vertices.
1, 1, 2, 5, 13, 34, 97, 277, 825, 2486, 7643, 23772, 74989, 238933, 769488, 2500758, 8199828, 27106647, 90316944, 303182461, 1025139840, 3490606305, 11967066094, 41302863014, 143493606215, 501772078429, 1765928732426, 6254738346969, 22294413256484, 79968425399831
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 13 set-systems: {} {{1}} {{1},{2}} {{1},{2},{3}} {{1},{2},{3},{4}} {{1},{1,2}} {{1},{2},{1,3}} {{1},{2},{3},{1,4}} {{1},{1,2},{1,3}} {{1},{2},{1,2},{3,4}} {{1},{1,2},{2,3}} {{1},{2},{1,3},{1,4}} {{1,2},{1,3},{2,3}} {{1},{2},{1,3},{2,4}} {{1},{2},{1,3},{3,4}} {{1},{1,2},{1,3},{1,4}} {{1},{1,2},{1,3},{2,4}} {{1},{1,2},{2,3},{2,4}} {{1},{1,2},{2,3},{3,4}} {{1},{2,3},{2,4},{3,4}} {{1,2},{1,3},{1,4},{2,3}} {{1,2},{1,3},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Eric Weisstein's World of Mathematics, Graph Loop.
Crossrefs
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}], Union@@#==Range[n]&]]],{n,0,5}]
-
PARI
a(n) = polcoef(G(n, O(x*x^n)) - if(n, G(n-1, O(x*x^n))), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024
Formula
Extensions
Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024
Comments