cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368627 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + x*(A(x)^3 - A(-x)^3)/2.

Original entry on oeis.org

1, 1, 3, 7, 40, 103, 723, 1941, 15060, 41382, 340657, 950061, 8132676, 22916139, 201684153, 572618987, 5145063940, 14692661910, 134152006842, 384852888898, 3559210821120, 10248531332559, 95777105998365, 276630878235275, 2607824127882204, 7551545042631558, 71714198513326425
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2024

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 40*x^4 + 103*x^5 + 723*x^6 + 1941*x^7 + 15060*x^8 + 41382*x^9 + 340657*x^10 + 950061*x^11 + 8132676*x^12 + ...
where A(x) is formed from the even bisection of A(x)^2 and the odd bisection of A(x)^3, as can be seen from the expansions
A(x)^2 = 1 + 2*x + 7*x^2 + 20*x^3 + 103*x^4 + 328*x^5 + 1941*x^6 + 6506*x^7 + 41382*x^8 + 142892*x^9 + 950061*x^10 + ...
A(x)^3 = 1 + 3*x + 12*x^2 + 40*x^3 + 198*x^4 + 723*x^5 + 3927*x^6 + 15060*x^7 + 86190*x^8 + 340657*x^9 + 2016195*x^10 + ...
so that the bisections of the above series are related by
(A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2, and
(A(x) + A(-x))/2 = 1 + x*(A(x)^3 - A(-x)^3)/2.
SPECIFIC VALUES.
The g.f. A(x) converges at the radius of convergence r, given by
A(-r) = 1 at r = (A(r) - 1)/(1 + A(r)^2) = 0.1795090246029167685576...
where A(r) = (1 + (28 + sqrt(783))^(1/3) + (28 - sqrt(783))^(1/3))/3 = 1.6956207695598620574163671... solves A(r)^3 - A(r)^2 = 2.
Other values are as follows.
A(t) = 3/2 at t = 0.1762576405478293392948378476047094214871919048852854...
with A(-t) = 0.9457634131178785046715685513829104426794138117773372...
A(1/6) = 1.39045291214794641706750008755820521981873579773148377...
A(-1/6) = 0.92547553450368274047514062093278734252641968691372863...
A(1/7) = 1.26282273990610251025800463852287012565418776197621997...
A(-1/7) = 0.91531855101291210815598364280272856428949318592006407...
A(1/8) = 1.20403758075277993770588254622742634950821058062345547...
A(-1/8) = 0.91758011120888933832570407861048171782335413914549218...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x,B); for(i=1,n, A=truncate(A)+x*O(x^i); B=subst(A,x,-x);
    A = 1 + x*(A^2 + B^2)/2 + x*(A^3 - B^3)/2 ; ); polcoeff(A,n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + x*(A(x)^3 - A(-x)^3)/2.
(2) A(x) = A(-x) + x*A(x)^2 + x*A(-x)^2.
(3) A(x) = 2 - A(-x) + x*A(x)^3 - x*A(-x)^3.
(4.a) A(x) = (1 - sqrt(1 - 4*x*A(-x) - 4*x^2*A(-x)^2)) / (2*x).
(4.b) A(-x) = (sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2) - 1) / (2*x).