cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368634 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(3*A(x)^2 - A(-x)^2)/2.

Original entry on oeis.org

1, 1, 4, 9, 52, 138, 904, 2581, 18020, 53622, 389112, 1189146, 8855560, 27571156, 209174544, 660249549, 5079702852, 16203796158, 126033559960, 405408758062, 3180991167640, 10301855821452, 81414086371696, 265150389430914, 2108026107021224, 6897985805906972, 55119920086104496
Offset: 0

Views

Author

Paul D. Hanna, Jan 12 2024

Keywords

Comments

Conjecture: a(n) is odd when n = 2^k - 1 for k >= 0 and even elsewhere.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 9*x^3 + 52*x^4 + 138*x^5 + 904*x^6 + 2581*x^7 + 18020*x^8 + 53622*x^9 + 389112*x^10 + 1189146*x^11 + 8855560*x^12 + ...
RELATED SERIES.
We can see from the expansion of A(x)^2, which begins
A(x)^2 = 1 + 2*x + 9*x^2 + 26*x^3 + 138*x^4 + 452*x^5 + 2581*x^6 + 9010*x^7 + 53622*x^8 + 194556*x^9 + 1189146*x^10 + 4427780*x^11 + 27571156*x^12 + ...
that the odd bisection of A(x) is derived from the even bisection of A(x)^2:
(A(x) - A(-x))/2 = x + 9*x^3 + 138*x^5 + 2581*x^7 + 53622*x^9 + ...
(A(x)^2 + A(-x)^2)/2 = 1 + 9*x^2 + 138*x^4 + 2581*x^6 + 53622*x^8 + ...
and the even bisection of A(x) is derived from the odd bisection of A(x)^2:
(A(x) + A(-x))/2 = 1 + 4*x^2 + 52*x^4 + 904*x^6 + 18020*x^8 + 389112*x^10 + ...
(A(x)^2 - A(-x)^2)/2 = 2*x + 26*x^3 + 452*x^5 + 9010*x^7 + 194556*x^9 + ...
so that (A(x) + A(-x))/2 = 1 + 2*x * (A(x)^2 - A(-x)^2)/2.
SPECIFIC VALUES.
A(-r) = 1 and A(r) = sqrt(3) at r = (sqrt(3) - 1)/4 = 0.183012701892219....
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x, B); for(i=1, n, A=truncate(A)+x*O(x^i); B=subst(A, x, -x);
    A = 1 + x*(A^2 + B^2)/2 + 2*x*(A^2 - B^2)/2 ; ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A); A = (1/x)*serreverse( (1 + 6*x - 8*x^2 - sqrt(1 + 4*x - 4*x^2 +x^2*O(x^n)))/4 ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1.a) A(x) = 1 + x*(3*A(x)^2 - A(-x)^2)/2.
(1.b) A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + 2*x*(A(x)^2 - A(-x)^2)/2.
(2.a) (A(x) + A(-x))/2 = 1 + 2*x*(A(x)^2 - A(-x)^2)/2.
(2.b) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2.
(2.c) (A(x) + A(-x))/2 = 1/(1 - 2*x*(A(x) - A(-x))).
(3.a) A(x) = (1 - sqrt(1 - 4*x*A(-x) - 4*x^2*A(-x)^2)) / (2*x).
(3.b) A(-x) = (sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2) - 1) / (2*x).
(4.a) A(x) = (1 - sqrt(1-16*x + 8*x*A(-x) + 16*x^2*A(-x)^2)) / (4*x).
(4.b) A(-x) = (sqrt(1+16*x - 8*x*A(x) + 16*x^2*A(x)^2) - 1) / (4*x).
(5) 0 = (1-2*x) - (1-6*x)*A(x) - x*(3+8*x)*A(x)^2 + 12*x^2*A(x)^3 - 8*x^3*A(x)^4.
(6) x = (1 + 6*x*A(x) - 8*x^2*A(x)^2 - sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2))/4.
(7) A(x) = (1/x)*Series_Reversion( (1 + 6*x - 8*x^2 - sqrt(1 + 4*x - 4*x^2))/4 ).
(8.a) Sum_{n>=0} a(n) * (sqrt(3) - 1)^n/4^n = sqrt(3).
(8.b) Sum_{n>=0} a(n) * (1 - sqrt(3))^n/4^n = 1.