A368657 Number of cycles in an n X n grid where the cycle cannot touch itself orthogonally or diagonally and must contain at least one inside point.
0, 0, 1, 13, 167, 2685, 50391, 1188935, 41749885, 2645126227, 341643017303, 82472721488013, 31312529515504513, 17381378412860375479, 14419291783372365769995, 18997663191047558313462721
Offset: 1
Examples
For n = 4, there are 13 valid cycles: . 1 2 3 4 ###. .### .... .... #.#. .#.# .### ###. ###. .### .#.# #.#. .... .... .### ###. . 5 6 7 8 #### .... ###. .### #..# #### #.#. .#.# #### #..# #.#. .#.# .... #### ###. .### . 9 10 11 12 .### ###. #### #### ##.# #.## #..# #..# #..# #..# #.## ##.# #### #### ###. .### . 13 #### #..# #..# ####
Links
- Cracking The Cryptic, The Trouble With Circular Reasoning Is.... (!), YouTube.
- Jimmy MÃ¥rdell, Python code used for generation of the sequence.
Comments