A368670 Numbers k such that k, k + 1, k + 2, and k + 4 are all semiprimes.
141, 201, 213, 217, 301, 1137, 1345, 1401, 1761, 1837, 1893, 1941, 1981, 2101, 3097, 3865, 3957, 4413, 4533, 4881, 5997, 6157, 6241, 7113, 7141, 7165, 7401, 7977, 8185, 8257, 8913, 9753, 9985, 10117, 11013, 11181, 11377, 11757, 12057, 13953, 14037, 14253, 14917, 14977, 14997, 16177, 16293, 16437, 16593
Offset: 1
Keywords
Examples
a(3) = 213 is a term because 213 = 3 * 71, 214 = 2 * 107, 215 = 5 * 43 and 217 = 7 * 31 are all semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(t -> numtheory:-bigomega(t)=2 and numtheory:-bigomega(t+1)=2 and numtheory:-bigomega(t+2)=2 and numtheory:-bigomega(t+4)=2, 4 * [$1..10000] +~ 1);
-
Mathematica
Select[Range[17000], PrimeOmega[#] == PrimeOmega[#+1] == PrimeOmega[#+2] == PrimeOmega[#+4] == 2 &] (* Stefano Spezia, Jan 02 2024 *)
Comments