cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368675 Number of partitions of [n] whose block maxima sum to 2n.

Original entry on oeis.org

1, 0, 0, 1, 2, 7, 15, 39, 81, 193, 396, 885, 1816, 3915, 7973, 16860, 34165, 71092, 143804, 295963, 596872, 1219950, 2455139, 4989265, 10028841, 20296288, 40745616, 82225558, 164916967, 332045545, 665566046, 1337794545, 2680049287, 5380396625, 10774301183
Offset: 0

Views

Author

Alois P. Heinz, Jan 02 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(3) = 1: 1|2|3.
a(4) = 2: 1|23|4, 1|24|3.
a(5) = 7: 12|3|45, 13|2|45, 1|234|5, 1|235|4, 145|2|3, 1|24|35, 1|25|34.
a(6) = 15: 12|34|56, 12|356|4, 134|2|56, 1356|2|4, 1|2345|6, 1|2346|5, 1|235|46, 1|236|45, 14|2|356, 1|245|36, 1|246|35, 156|2|34, 1|25|346, 1|26|345, 1|2|3|456.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    a:= n-> coeff(b(n, 0), x, 2*n):
    seq(a(n), n=0..42);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(2*n, n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    a[n_] := If[n == 0, 1, b[2n, n, 0]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz *)

Formula

a(n) = A367955(n,2n).
a(n) ~ c * 2^n, where c = 0.636808431228827742738441592748953932083264824206324529619378074873607293... - Vaclav Kotesovec, Jan 13 2024