A368678 Number of permutations of [n] whose cycle maxima sum to 2n.
1, 0, 0, 1, 2, 10, 41, 260, 1552, 12818, 101280, 1021908, 10154064, 121656672, 1447205472, 20215013184, 280271024640, 4457067906240, 70826580095040, 1264147627392000, 22588177271650560, 448332829478760960, 8899910723677639680, 194096853444946636800
Offset: 0
Keywords
Examples
a(0) = 1: the empty permutation. a(3) = 1: (1)(2)(3). a(4) = 2: (1)(23)(4), (1)(24)(3). a(5) = 10: (12)(3)(45), (13)(2)(45), (1)(234)(5), (1)(243)(5), (1)(235)(4), (1)(253)(4), (145)(2)(3), (154)(2)(3), (1)(24)(35), (1)(25)(34).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..451
- Wikipedia, Permutation
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, expand(b(n-1)*(t-n+x^n))) end: a:= n-> coeff(subs(t=n, b(n)), x, 2*n): seq(a(n), n=0..23);
-
Mathematica
T[n_] := Module[{t}, CoefficientList[Product[n-k+t^k, {k, 1, n-1}]*t^(n-1), t]]; a[n_] := Switch[n, 0, 1, 1|2, 0, _, T[n][[2 n]]]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 03 2024 *)
Formula
a(n) = A143947(n,2n).