cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A304250 Perfect powers whose prime factors span an initial interval of prime numbers.

Original entry on oeis.org

4, 8, 16, 32, 36, 64, 128, 144, 216, 256, 324, 512, 576, 900, 1024, 1296, 1728, 2048, 2304, 2916, 3600, 4096, 5184, 5832, 7776, 8100, 8192, 9216, 11664, 13824, 14400, 16384, 20736, 22500, 26244, 27000, 32400, 32768, 36864, 44100, 46656, 57600, 65536, 72900
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

The multiset of prime indices of a(n) is the a(n)-th row of A112798. This multiset is normal, meaning it spans an initial interval of positive integers, and periodic, meaning its multiplicities have a common divisor greater than 1.

Examples

			Sequence of all normal periodic multisets begins
4:    {1,1}
8:    {1,1,1}
16:   {1,1,1,1}
32:   {1,1,1,1,1}
36:   {1,1,2,2}
64:   {1,1,1,1,1,1}
128:  {1,1,1,1,1,1,1}
144:  {1,1,1,1,2,2}
216:  {1,1,1,2,2,2}
256:  {1,1,1,1,1,1,1,1}
324:  {1,1,2,2,2,2}
512:  {1,1,1,1,1,1,1,1,1}
576:  {1,1,1,1,1,1,2,2}
900:  {1,1,2,2,3,3}
1024: {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],FactorInteger[#][[-1,1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All,2]]>1&]

Formula

Intersection of A001597 and A055932.

A380446 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k), where omega = A001221.

Original entry on oeis.org

36, 144, 216, 324, 576, 900, 1296, 1728, 2304, 2916, 3600, 5184, 5832, 7776, 8100, 9216, 11664, 13824, 14400, 20736, 22500, 26244, 27000, 32400, 36864, 44100, 46656, 57600, 72900, 82944, 90000, 104976, 110592, 129600, 147456, 157464, 176400, 186624, 202500, 216000
Offset: 1

Views

Author

Michael De Vlieger, Jul 25 2025

Keywords

Comments

Perfect powers k^m, m > 1, for k in A055932.
Union of {k^m : rad(k) | P(i), m >= 2}, rad = A007947, P = A002110. Therefore perfect powers in A033845, A143207, A147571, A147572, etc. are proper subsets.
Terms are even. For a(n) such that omega(a(n)) > 2, a(n) mod 10 = 0, where omega = A001221.

Examples

			Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading. Terms that also appear in A368682 are marked by "#":
                         Exponents
 n      a(n)             2.3.5.7.11
-----------------------------------
 1       36 =    6^2  #  2.2
 2      144 =   12^2  #  4.2
 3      216 =    6^3  #  3.3
 4      324 =   18^2     2.4
 5      576 =   24^2  #  6.2
 6      900 =   30^2  #  2.2.2
 7     1296 =    6^4  #  4.4
 8     1728 =   12^3  #  6.3
 9     2304 =   48^2  #  8.2
10     2916 =   54^2     2.6
11     3600 =   60^2  #  4.2.2
12     5184 =   72^2  #  6.4
26    44100 =  210^2  #  2.2.2.2
90  5336100 = 2310^2  #  2.2.2.2.2
		

Crossrefs

Programs

  • Mathematica
    (* Load linked Mathematica algorithm, then: *)
    Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A131605 and A055932 = A304250 \ A246547.

A368681 Products of primorials that are perfect powers.

Original entry on oeis.org

1, 4, 8, 16, 32, 36, 64, 128, 144, 216, 256, 512, 576, 900, 1024, 1296, 1728, 2048, 2304, 3600, 4096, 5184, 7776, 8192, 9216, 13824, 14400, 16384, 20736, 27000, 32400, 32768, 36864, 44100, 46656, 57600, 65536, 82944, 110592, 129600, 131072, 147456, 176400, 186624
Offset: 1

Views

Author

Michael De Vlieger, Jan 02 2024

Keywords

Comments

Intersection of A025487 and A001597.
Contains A365308 (perfect powers of composite primorials), A368508 (perfect powers of composite superprimorials), and A368682.
These numbers are perfect powers of some smaller product of primorials.

Examples

			Let b(n) = A025487(n).
a(1) = b(1) = 1 = 1^k = b(1)^k, k >= 2,
a(2) = b(3) = 4 = 2^2 = b(2)^2,
a(3) = b(5) = 8 = 2^3 = b(2)^3,
a(6) = b(11) = 36 = 6^2 = b(4)^2,
a(9) = b(19) = 144 = 12^2 = b(6)^2, etc.
2 is not in the sequence since 2 is squarefree and not in A001597.
		

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Range[4, 200000, 2], Or[PrimePowerQ[#], And[Union@ Differences@ PrimePi@ #1 == {1}, AllTrue[Union@ Differences@ #2, # <= 0 &], GCD @@ #2 > 1] & @@ Transpose@ FactorInteger[#]] &]

A380033 Numbers that set records in A380032.

Original entry on oeis.org

12, 36, 144, 576, 720, 900, 2880, 3600, 14400, 32400, 44100, 57600, 129600, 176400, 705600, 1587600, 2822400, 6350400, 11289600, 21344400, 25401600, 57153600, 85377600, 101606400, 192099600, 341510400, 768398400, 1366041600, 3073593600, 6915585600, 12294374400
Offset: 1

Views

Author

Michael De Vlieger, Jan 11 2025

Keywords

Comments

Proper subset of A364710 (intersection of A025487 and A126706).
Conjecture 1: Almost all numbers in this sequence are powerful squares. Only 12, 720, and 2880 are not powerful. Thereby this sequence is a proper subset of A368682 (intersection of A025487 and A131605, the latter a subset of A001597 and A286708), in turn a subset of A364710.
Conjecture 2: 36, 900, and 44100 are the only squares of primorials (in A061742) in the sequence.

Examples

			Let b(n) = A380032(n).
Table showing exponents of prime power factors of a(n) for n = 1..12.
Example: a(5) = 2880 = 2^6 * 3^2 * 5, hence we write "6.2.1".
   n     a(n)  Exp.   b(a(n))
  --------------------------
   1      12   2.1        1   2*6
   2      36   2.2        2   2*18 = 3*12
   3     144   4.2        3   2*72 = 3*48 = 4*36
   4     576   6.2        4   2*288 = 3*192 = 4*144 = 8*72
   5     720   4.2.1      5   2*360 = 3*240 = 4*180 = 6*120 = 12*60
   6     900   2.2.2      6
   7    2880   6.2.1      7
   8    3600   4.2.2      9
   9   14400   6.2.2     12
  10   32400   4.4.2     13
  11   44100   2.2.2.2   14
  12   57600   8.2.2     15
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0;
    s = Select[Union@ Flatten@ f[8][[3 ;; -1]], Not @* SquareFreeQ];
    nn = Length[s]; Print[nn];
    Reap[Monitor[
      Do[k = s[[i]];
        If[# > r, r = #; Sow[k]] &@
          Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
            _?((m = GCD @@ {##};
              And[! MemberQ[{1, #2}, m],
              m == #1,
              ! Divisible[#1, rad[#2]]]) & @@ # &)], {i, nn}], i] ][[-1, 1]]

A380452 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k) that are not also products of primorials, where omega = A001221.

Original entry on oeis.org

324, 2916, 5832, 8100, 11664, 22500, 26244, 72900, 90000, 104976, 157464, 202500, 236196, 291600, 360000, 396900, 419904, 562500, 656100, 729000, 944784, 1102500, 1259712, 1440000, 1822500, 1889568, 2125764, 2160900, 2250000, 2624400, 3375000, 3572100, 3779136
Offset: 1

Views

Author

Michael De Vlieger, Jul 25 2025

Keywords

Comments

Perfect powers k^m, m > 1, for composite k in A056808.
Terms are even. For a(n) such that omega(a(n)) > 2, a(n) mod 10 = 0, where omega = A001221.

Examples

			Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading:
                      Exponents
 n      a(n)          2.3.5
-------------------------------
 1      324 =  18^2   2.4
 2     2916 =  54^2   2.6
 3     5832 =  18^3   3.6
 4     8100 =  90^2   2.4.2
 5    11664 = 108^2   4.6
 6    22500 = 150^2   2.2.4
 7    26244 = 162^2   2.8
 8    72900 = 270^2   2.6.2
 9    90000 = 300^2   4.2.4
10   104976 =  18^4   4.8
11   157464 =  54^3   3.9
12   202500 = 450^2   2.4.4
		

Crossrefs

Programs

  • Mathematica
    (* Load linked Mathematica algorithm, then: *)
    Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A131605 and A056808 = A380446 \ A368682.
Set difference A380446 \ A025487.
Showing 1-5 of 5 results.