A368717 a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^4 / k!.
0, 1, 14, 39, 100, 125, 546, -1421, 15464, -132615, 1336150, -14683009, 176216844, -2290790411, 32071104170, -481066511925, 7697064256336, -130850092274191, 2355301661040414, -44750731559637545, 895014631192910900, -18795307255050934419
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..448
- Eric Weisstein's World of Mathematics, Bell Polynomial.
- Wikipedia, Touchard polynomials
Programs
-
Maple
f:= proc(n) option remember; - n*procname(n-1)+n^4 end proc: f(0):= 0: seq(f(i),i=0..30); # Robert Israel, May 13 2025
-
Mathematica
Table[-n + 2*n^2 + n^3 + (-1)^n*n*Subfactorial[n-1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 18 2025 *)
-
PARI
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 4, stirling(4, k, 2)*x^k)*exp(x)/(1+x))))
Formula
a(0) = 0; a(n) = -n*a(n-1) + n^4.
E.g.f.: B_4(x) * exp(x) / (1+x), where B_n(x) = Bell polynomials.
a(n) ~ (-1)^n * exp(-1) * n!. - Vaclav Kotesovec, Jul 18 2025