A368754 a(n) = (n!)^n * [x^n] * 1/(1 - polylog(n,x)).
1, 1, 5, 278, 404768, 28436662624, 151309093659896512, 86745908552613198656020224, 7184659625769578063908866060107907072, 110866279942987479997999976181870531647691458347008, 399488258540989429698770032526869852804662313023226648081962369024
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30
Crossrefs
Programs
-
Maple
a:= n-> n!^n*coeff(series(1/(1-polylog(n, x)), x, n+1), x, n): seq(a(n), n=0..10); # second Maple program: b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)/j^k, j=1..n)) end: a:= n-> n!^n*b(n$2): seq(a(n), n=0..10);
Formula
a(n) = (n!)^n*b(n,n) with b(n,k) = Sum_{j=1..n} b(n-j,k)/j^k for n>0, b(0,k) = 1.