cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368773 Antidiagonal sums of A059450.

Original entry on oeis.org

1, 1, 3, 7, 21, 53, 159, 419, 1257, 3401, 10203, 28095, 84285, 235005, 705015, 1984155, 5952465, 16873745, 50621235, 144327287, 432981861, 1240296773, 3720890319, 10700364691, 32101094073, 92619680089, 277859040267, 803956981807, 2411870945421, 6995553520653, 20986660561959, 61001041404555
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2024

Keywords

Crossrefs

Cf. A059450.

Programs

  • Maple
    A368773 := proc(n)
        add(A059450(n-j,j), j=0..floor(n/2)) ;
    end proc:
    seq(A368773(n),n=0..40) ; # R. J. Mathar, Mar 25 2024
  • PARI
    N=32;  M=matrix(N+1, N+1);  M[1,1] = 1;
    T(n,k)= return( M[n+1,k+1] );
    { \\ A059450
     for (n=1, N,
      for (k=0, n,
        v = sum(y=0, n-1, T(y, k) ); \\ vert sum from top
        h = sum(y=0, n-1, T(n, y) ); \\ horiz sum from left
        s = v + h;
        M[ n+1, k+1 ] = s;
        );
    ); }
    \\ antidiagonal sums:
    for (n=0, N, my(r=n,c=0, s=0); while( c<=r, s+=T(r,c); r-=1; c+=1 ); print1(s,", "));

Formula

Apparent g.f.: (-b-sqrt(b^2-4*a*c))/(2*a) where a=(6*x^2 - 2*x), b=(-3*x^2 + 4*x - 1), and c=(-x + 1). [determined with Pari's seralgdep()]
Conjecture: D-finite with recurrence +(n+1)*a(n) +3*(-1)*a(n-1) +(-10*n+11)*a(n-2) +3*a(n-3) +9*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 25 2024