A368773 Antidiagonal sums of A059450.
1, 1, 3, 7, 21, 53, 159, 419, 1257, 3401, 10203, 28095, 84285, 235005, 705015, 1984155, 5952465, 16873745, 50621235, 144327287, 432981861, 1240296773, 3720890319, 10700364691, 32101094073, 92619680089, 277859040267, 803956981807, 2411870945421, 6995553520653, 20986660561959, 61001041404555
Offset: 0
Keywords
Crossrefs
Cf. A059450.
Programs
-
Maple
A368773 := proc(n) add(A059450(n-j,j), j=0..floor(n/2)) ; end proc: seq(A368773(n),n=0..40) ; # R. J. Mathar, Mar 25 2024
-
PARI
N=32; M=matrix(N+1, N+1); M[1,1] = 1; T(n,k)= return( M[n+1,k+1] ); { \\ A059450 for (n=1, N, for (k=0, n, v = sum(y=0, n-1, T(y, k) ); \\ vert sum from top h = sum(y=0, n-1, T(n, y) ); \\ horiz sum from left s = v + h; M[ n+1, k+1 ] = s; ); ); } \\ antidiagonal sums: for (n=0, N, my(r=n,c=0, s=0); while( c<=r, s+=T(r,c); r-=1; c+=1 ); print1(s,", "));
Formula
Apparent g.f.: (-b-sqrt(b^2-4*a*c))/(2*a) where a=(6*x^2 - 2*x), b=(-3*x^2 + 4*x - 1), and c=(-x + 1). [determined with Pari's seralgdep()]
Conjecture: D-finite with recurrence +(n+1)*a(n) +3*(-1)*a(n-1) +(-10*n+11)*a(n-2) +3*a(n-3) +9*(n-4)*a(n-4)=0. - R. J. Mathar, Mar 25 2024