cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368779 The number of prime factors of the cubefree numbers, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 4, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 2, 3, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 3, 1, 3, 2, 3, 1, 1, 2, 3, 3, 2, 3, 1, 2, 1, 4, 2, 2, 2, 1, 4, 2, 3, 2, 2, 2, 1, 3, 3, 4, 1, 3
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], Total[e], Nothing]]; f[1] = 0; Array[f, 100]
  • PARI
    lista(max) = {my(e); for(k = 1, max, e = factor(k)[,2]; if(k == 1 || vecmax(e) < 3, print1(vecsum(e), ", ")));}
    
  • Python
    from sympy import mobius, integer_nthroot, primeomega
    def A368779(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return primeomega(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A001222(A004709(n)).
Sum_{A004709(k) <= x} a(k) = (1/zeta(3)) * x * log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]