A368779 The number of prime factors of the cubefree numbers, counted with multiplicity.
0, 1, 1, 2, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 4, 1, 2, 2, 1, 3, 1, 3, 3, 2, 1, 2, 3, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 3, 1, 3, 2, 3, 1, 1, 2, 3, 3, 2, 3, 1, 2, 1, 4, 2, 2, 2, 1, 4, 2, 3, 2, 2, 2, 1, 3, 3, 4, 1, 3
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk and Matilde Lalín, The Number of Prime Factors on Average in Certain Integer Sequences, Journal of Integer Sequences, Vol. 25 (2022), Article 22.2.3.
Programs
-
Mathematica
f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], Total[e], Nothing]]; f[1] = 0; Array[f, 100]
-
PARI
lista(max) = {my(e); for(k = 1, max, e = factor(k)[,2]; if(k == 1 || vecmax(e) < 3, print1(vecsum(e), ", ")));}
-
Python
from sympy import mobius, integer_nthroot, primeomega def A368779(n): def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return primeomega(m) # Chai Wah Wu, Aug 06 2024