A368811 a(n) = period length of the sequence A020639(n^k - 1), k >= 1.
1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 10, 1, 1, 1, 60, 1, 10, 1, 1, 1, 18, 1, 2, 1, 1, 1, 660, 1, 66, 1, 1, 1, 1, 1, 10, 1, 1, 1, 4620, 1, 6, 1, 1, 1, 660, 1, 2, 1, 1, 1, 31878, 1, 2, 1, 1, 1, 197340, 1, 5742, 1, 1, 1, 1, 1, 52026, 1, 1, 1, 440220, 1, 28014, 1, 1, 1, 4, 1, 2610, 1, 1, 1, 28014, 1, 2, 1, 1, 1, 3693690, 1, 2, 1, 1, 1, 1, 1, 7590, 1, 1, 1, 1642460820
Offset: 3
Keywords
Examples
a(8) = 2 is the period length of A010705. a(12) = 12 is the period length of A366717.
Links
- Max Alekseyev, Table of n, a(n) for n = 3..10000
Programs
-
PARI
{ a368811(n) = my(r=[], z); forprime(p=2, factor(n-1)[1, 1], if(n%p==0, next); z=znorder(Mod(n, p)); if(!#r || vecmin(apply(x->z%x,r)), r=concat(r,[z])) ); lcm(r); }
Formula
For odd n >= 3, a(n) = 1.
Comments