A368817 Sum of the refactorable numbers less than n that do not divide n.
0, 0, 2, 0, 2, 0, 2, 0, 10, 17, 19, 17, 31, 29, 31, 21, 31, 20, 49, 47, 49, 47, 49, 27, 73, 71, 64, 71, 73, 71, 73, 63, 73, 71, 73, 32, 109, 107, 109, 99, 149, 147, 149, 147, 140, 147, 149, 103, 149, 147, 149, 147, 149, 120, 149, 139, 205, 203, 205, 191, 265, 263
Offset: 1
Examples
a(15) = 31. There are 4 refactorable numbers that are less than 15 that do not divide 15, namely: 2, 8, 9, 12. Their sum is 2 + 8 + 9 + 12 = 31.
Programs
-
Mathematica
Table[Sum[k (1 - Ceiling[k/DivisorSigma[0, k]] + Floor[k/DivisorSigma[0, k]]) (Ceiling[n/k] - Floor[n/k]), {k, n}], {n, 100}]
Formula
a(n) = Sum_{k=1..n} k * c(k) * (ceiling(n/k) - floor(n/k)), where c = A336040.