A368821 Number of compositions of n into 2 refactorable parts.
0, 1, 2, 1, 0, 0, 0, 0, 2, 4, 2, 0, 2, 2, 0, 1, 2, 1, 2, 4, 2, 0, 0, 1, 2, 4, 2, 0, 0, 2, 0, 2, 2, 0, 0, 3, 2, 2, 0, 0, 2, 4, 0, 2, 2, 0, 0, 5, 2, 0, 0, 2, 0, 2, 0, 0, 2, 4, 0, 2, 2, 2, 0, 4, 2, 0, 0, 4, 2, 0, 0, 3, 2, 4, 0, 2, 0, 2, 0, 5, 4, 2, 0, 4, 2, 2, 0, 2, 4, 4, 0, 6, 2, 0, 0, 10, 4
Offset: 1
Examples
a(10) = 4. There are 4 ordered ways to write 10 as the sum of two refactorable numbers: 1 + 9 = 2 + 8 = 8 + 2 = 9 + 1. a(36) = 3. There are 3 ordered ways to write 36 as the sum of two refactorable numbers: 12 + 24 = 18 + 18 = 24 + 12.
Programs
-
Mathematica
Table[Sum[(1 - Ceiling[k/DivisorSigma[0, k]] + Floor[k/DivisorSigma[0, k]]) (1 - Ceiling[(n - k)/DivisorSigma[0, (n - k)]] + Floor[(n - k)/DivisorSigma[0, (n - k)]]), {k, n - 1}], {n, 100}]
Formula
a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c = A336040.